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Abstract

The paper deals with the non-linear dynamic analysis of cables with a pair of viscous dampers close to
one support. Such cables are characterized by a sag-to-chord-length ratio below 0.02, for which natural
frequencies for the vertical and the horizontal vibrations are pair-wise close. Under resonance the non-
linear coupling of pairs of modes may cause whirling harmonic motions around the chord line. Whirling
motion may occur after bifurcation from single-mode response for harmonic loads in either vertical or
horizontal direction. The non-linear features are included in the two coupled modes, while all other modes
are treated as linear. The motion is discretized by expansion in terms of the damped complex
eigenfunctions. The applied base functions fulfil the transition condition at the damper, leading to fast
convergence of the expansion. It is demonstrated that the behaviour of the whirling motion is controlled
primarily by the damper acting in the direction of the unloaded mode, whereas the magnitude of the
damper in the loaded mode is less important. If the dampers in the vertical and horizontal direction are
close to the optimal value of the corresponding taut cable case, substantial reduction of the vibration level
of the whirling mode as well as the frequency interval of its occurrence is attained.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Cables used as structural elements in bridges and to support masts and towers are flexible and
may hence be prone to excessive vibrations, either caused by wind or a combination of wind and
rain, or by the motion of the supported structure, e.g. Ref. [1]. A common way to provide external
damping is to mount a local viscous damper at a distance typically 2–4% of the span from one of
the supports. The effect of the damper depends on the tuning: if the viscosity of the damper is too
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high it will act as a support, and if the viscosity is too low it will fail to dissipate sufficient energy.
Considering the case of a taut string and based on a semi-empirical approach, Kovacs [2] found
that the maximum modal damping which could be provided by the damper was approximately
half the relative distance of the damper from the support. An analytical solution to this problem
was given by Krenk [3], who confirmed this result and obtained an accurate explicit asymptotic
solution for the damping properties in terms of the complex wave number. The taut cable results
are directly applicable to horizontal vibrations of cables with finite sag. The corresponding
problem for vertical vibrations has recently been studied by Krenk and Nielsen [4], who derived
explicit results for the modal damping ratios and for optimal tuning of the damper. The vertical
modes of vibration separate into antisymmetric inextensional and symmetrical extensional modes.
The former take place without dynamic extension of the cable, and hence have a low material
dissipation of energy. However, the analysis showed that these modes may be effectively damped
by a viscous damper. As for the taut cable problem the maximum damping ratio that can be
obtained was approximately half the relative distance from the support. By contrast less effective
damping may be obtained for the symmetrical extensional modes, because these modes develop
regions of reduced vibration levels near the ends.

Forced response with coupled vertical and horizontal response has been analyzed in a number
of studies based on two-degree-of-freedom (2 d.o.f.) models. Al-Noury and Ali [5] considered the
harmonic response due to a uniformly distributed load with harmonic time variation, using a 2
d.o.f. Galerkin approach with sine functions used as shape functions, identical to the eigenmodes
of the undamped taut cable. The same problem was dealt with by Rao and Iyengar [6], who used
the undamped eigenmodes of the parabolic equilibrium approximation as a functional basis for
the reduction to a 2 d.o.f. system. The use of the parabolic approximation is restricted to relatively
small sag-to-chord-length ratios. An important dynamic load case for support cables as used in
stay bridges and TV-towers is motion of the support points. The main effect on the non-linear
response is the introduction of significant parametric terms, which may cause significant sub-,
super- and combinatorial harmonic responses, Ref. [7].

The effect of forced support motion has been considered by Perkins [8], who obtained analytical
solutions based on a first order perturbation analysis of a 2 d.o.f. model for coupled vertical and
horizontal response using the undamped eigenmodes of the parabolic approximation to the static
equilibrium suspension as a functional basis. The emphasis was on analysis of the 2:1 resonance
phenomenon close to the so-called cross-over point of cables with relatively large sag-to-chord-
length ratio, where an vertical harmonic resonance co-exists with a subharmonic resonance of the
order 2 occurring in the horizontal modal co-ordinate. Lee and Perkins [9] extended the work to
include second order perturbations and multiple internal resonances. Still, the focus was on 2:1
resonance, whereas the excitation was changed to a harmonic-varying uniformly distributed load
acting in the static equilibrium plane. The same load was considered by Lee and Perkins [10] with
emphasis on combined harmonic resonance in the vertical and horizontal modes. It was
demonstrated that the stable response to the vertical excitation at a certain vibration level was a
whirling motion involving a phase lag of p=2 between the linear mode shapes.

The present paper considers the non-linear harmonic response of a cable harmonically loaded
in the static equilibrium state, and with discrete dampers located close to the lower support point
acting orthogonal to the chord either in the vertical equilibrium plane or in the horizontal
direction. The displacement components orthogonal to the chord are discretized by an expansion
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in the damped eigenmodes, derived from the corresponding linear problem. In particular,
harmonic resonance excitation in the lowest vertical and horizontal modes are considered.
Because of the shallow cable assumptions the non-linear part of the response may be reduced to
the analysis of a 2 d.o.f. system, involving a single vertical and a single horizontal mode. A first
order perturbation solution to the non-linear modal co-ordinate equations of the 2-d.o.f. system is
derived, and based on the derived model the capability of the damper acting in the horizontal
direction to preventing coupled whirling motions is investigated.

2. Equations of non-linear cable vibrations

Fig. 1 shows a cable defined by the equilibrium state yðxÞ; the sag f and the chord length l;
which is supported by two linear springs with the spring constants k1 and k2 acting along the
chord. At the distance a from the support there is a pair of linear viscous dampers with the
damper constant cy and cz acting in the vertical and horizontal directions, respectively. The total
weight of the cable is W and the horizontal component of the equilibrium cable force is H: Within
the shallow cable approximation the static curve of the cable is the parabola

y ¼ 4f 1�
x

l

� �x

l
; ð1Þ

where f and l are related to the chord force H as

Hf ¼ 1
8

Wl: ð2Þ

The unit tangential vector at a certain point of the initial cable configuration with the co-ordinates
ðx; y; 0Þ is given as

tðxÞ ¼
d

ds

x

y

0

2
64
3
75; ð3Þ

where ds denotes an infinitesimal cable element at the considered position. The material point of
the initial cable configuration with the co-ordinates ðx; y; 0Þ undergoes the displacement vector
½uxðx; tÞ; uyðx; tÞ; uzðx; tÞ�T in the three co-ordinate directions. Then the unit tangential vector at the
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Fig. 1. Cable in equilibrium configuration.
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considered point in the new configuration becomes

t1ðx; tÞ ¼
@

@s1

x þ ux

y þ uy

uz

2
64

3
75 ¼ tðxÞ þ

@

@s

ux

uy

uz

2
64

3
75

0
B@

1
CA ds

ds1
: ð4Þ

It follows from Eq. (4) that the initial and deformed length of the considered cable element are
related as

ds1

ds

� �2

¼ 1þ 2
dx

ds

@ux

@s
þ

dy

ds

@uy

@s

� �
þ

@ux

@s

� �2

þ
@uy

@s

� �2

þ
@uz

@s

� �2

: ð5Þ

The axial strain e then follows from Eq. (5) as

e ¼
ds1 � ds

ds
C

dx

ds

@ux

@s
þ

dy

ds

@uy

@s
þ

1

2

@uy

@s

� �2

þ
1

2

@uz

@s

� �2

: ð6Þ

The term 1
2
ð@ux=@sÞ2 is of magnitude e2; and has been omitted in comparison to the remaining

terms on the right side of Eq. (5), which are all of the magnitude e: To the same order of
approximation

dðx þ uxÞ
ds1

¼ 1þ
@ux

@x

� �
dx

ds1
C

dx

ds
: ð7Þ

The increment of the component of the cable force in the x-direction must balance DH;

DH ¼ ðF þ DF Þ
dðx þ uxÞ

ds1
� F

dx

ds
CDF

dx

ds
; ð8Þ

where Eq. (7) has been used. The elasticity equation of the cable may then be written as

DH
ds

dx
¼ EAe: ð9Þ

Insertion of Eq. (6) and the introduction of x as independent parameter then provides

DH
ds

dx

� �3

¼ EA
@ux

@x
þ

dy

dx

@uy

@x
þ

1

2

@uy

@x

� �2

þ
1

2

@uz

@x

� �2
 !

: ð10Þ

Due to the springs, the chord length will change by

Dl ¼ �DH
1

k1
þ

1

k2

� �
: ð11Þ

Next, integration over l is performed in Eq. (10), and Dl ¼ uxðl; tÞ � uxð0; tÞ is eliminated by
means of Eq. (11). After introduction of the non-dimensional abscissa x ¼ x=l the following
relation is obtained:

DHL0 ¼
EA

l
8f

Z l

0

uy dx þ
1

2

Z 1

0

@uy

@x

� �2

þ
@uz

@x

� �2
 !

dx

 !
; ð12Þ
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where

L0 ¼ Le þ EA
1

k1
þ

1

k2

� �
ð13Þ

and Le denotes the so-called effective cable length,

Le ¼
Z l

0

ds

dx

� �3

dxC
Z l

0

1þ
3

2

dy

dx

� �2
 !

dx ¼ l þ 8
f 2

l
: ð14Þ

The approximation in the derivation of Eq. (14) introduces an error of the magnitude f 4=l4:
The cable vibrations are caused by the distributed external loads pyðx; tÞ and pzðx; tÞ per unit

length of the chord. Then the equations of motion for non-linear vibrations read

ðH þ DHÞ
@2uy

@x2
� ml2

@2uy

@t2
� cyl

@uy

@t
dðx� aÞ � 8fDH ¼ �pyðx; tÞl2; ð15Þ

ðH þ DHÞ
@2uz

@x2
� ml2

@2uz

@t2
� czl

@uz

@t
dðx� aÞ ¼ �pzðx; tÞl2; ð16Þ

where m denotes the mass per unit length of the cable, and the position of the damper is
determined by the non-dimensional coordinate a ¼ a=l: Insertion of Eq. (12) into Eqs. (15) and
(16) provides the equivalent equations

D1;rðuÞ þ D2;rðuÞ þ D3;rðuÞ ¼ �prðx; tÞl2; r ¼ y; z; ð17Þ

where uTðx; tÞ ¼ ½uyðx; tÞ; uzðx; tÞ�; and the index r specifies the co-ordinate direction. D1;rðuÞ; D2;rðuÞ
and D3;rðuÞ contains the linear, the quadratic and the cubic terms in the equation of motion in the
co-ordinate direction r; respectively. These integro-differential operators are defined as follows:

D1;rðuÞ ¼ H
@2ur

@x2
� l2

r

Z 1

0

urdx
� �

� ml2
@2ur

@t2
� crl

@ur

@t
dðx� aÞ; r ¼ y; z; ð18Þ

D2;yðuÞ ¼ 8f
EA

L0l

@2uy

@x2

Z 1

0

uydx�
1

2

Z 1

0

@uy

@x

� �2

þ
@uz

@x

� �2
 !

dx

 !
; ð19Þ

D2;zðuÞ ¼ 8f
EA

L0l

@2uz

@x2

Z 1

0

uydx; ð20Þ

D3;rðuÞ ¼
1

2

EA

L0l

@2ur

@x2

Z 1

0

@uy

@x

� �2

þ
@uz

@x

� �2
 !

dx; r ¼ y; z; ð21Þ

where l2
r denotes the stiffness parameter defined by Irvine [11] as

l2
y ¼ 64

EA

H

f 2

L0l
; l2

z ¼ 0: ð22Þ
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3. Damped linear eigenvibrations

Damped linear eigenvibrations are described by Eqs. (17) and (18),

H
@2ur

@x2
� l2

r

Z 1

0

urdx
� �

� ml2
@2ur

@t2
� crl

@ur

@t
dðx� aÞ ¼ 0; r ¼ y; z: ð23Þ

Solutions to Eq. (23) are searched for in the form

urðx; tÞ ¼ *urðxÞeiort; r ¼ y; z; ð24Þ

where the amplitude functions *urðxÞ are solutions to the eigenvalue problems

d2 *ur

dx2
� l2

r

Z 1

0

*urdxþ ðb2
r � ibrZrdðx� aÞÞ *ur ¼ 0: ð25Þ

The solutions of Eq. (25) must fulfill the geometric boundary conditions *urð0Þ ¼ *urð1Þ ¼ 0: br and
Zr denote a non-dimensional wave-number and non-dimensional damping constant given as

br ¼ orl

ffiffiffiffiffi
m

H

r
; Zr ¼

crffiffiffiffiffiffiffiffi
Hm

p ; r ¼ y; z ð26; 27Þ

The discrete damper force is balanced by the transverse projection of the cable force before and
after the support point of the damper. Formally, this effect is represented by the d-function in
Eq. (25). Alternatively, this may be formulated in terms of the transition conditions at x ¼ a:

d *urðaþÞ
dx

�
d *urða�Þ

dx
¼ ibrZr *urðaÞ: ð28Þ

It follows from Eqs. (25) and (28) that if ðior;j; *ur;jÞ denotes the jth eigensolution, then ð�ion
r;j; *u

n
r;jÞ

is another eigensolution, where on
r;j is the complex conjugate of or;j: The solutions of Eq. (25),

which fulfils the differential equation, the boundary conditions and the transition condition (28)
are, [4],

*urðxÞ ¼

*ua;r
sin brx
sin bra

þ Cr
ð1� cos brxÞ sin bra� ð1� cos braÞ sin brx

b2
r sin bra

*ua;r
sin brx

0

sin bra0
þ Cr

ð1� cos brx
0Þ sin bra

0 � ð1� cos bra
0Þ sin brx

0

b2
r sin bra0

8>>><
>>>:

; ð29Þ

where the upper formula applies for xpa and the lower for xXa: The parameter Cr is defined as

Cr ¼ l2
r

Z 1

0

*urdx; ð30Þ

*ua;r denotes the undetermined amplitudes at x ¼ a; and x0 ¼ 1� x; a0 ¼ 1� a: For the horizontal
vibrations l2

z ¼ 0; whereby Cz ¼ 0: Hence, Eq. (29) reduces to the following simple taut cable
form derived by Krenk [3]:

*uzðxÞ ¼
*ua;z

sin bzx
sin bza

; xpa

*ua;z
sin bzx

0

sin bza0
; x > a

8>><
>>: : ð31Þ
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The derivative of the eigenfunctions becomes

d *ur

dx
¼

*ua;rbr

cos brx
sin bra

þ Cr
sin brx sin bra� ð1� cos braÞ cos brx

br sin bra
; xpa

� *ua;rbr

cos brx
0

sin bra0
� Cr

sin brx
0 sin bra

0 � ð1� cos bra
0Þ cos brx

0

br sin bra0
; x > a

8>><
>>: : ð32Þ

Insertion of Eq. (29) into the transition condition (28) and into Eq. (30) provides the condition
for the determination of the vertical eigenfrequencies

tan
by

2

� �
tan

by

2

� �
�

by

2
þ

4

l2
y

by

2

� �3
 !

¼ �2iZy

sinðbya
2
Þ sinðbya

0

2
Þ

cosð
by

2
Þ

tan
by

2

� �
�

cosðbya
2
Þ cosðbya

0

2
Þ

cosð
by

2
Þ

by

2
�

4

l2y

by

2

� �3
 ! !

: ð33Þ

Algorithms for the numerical solution of the complex eigenvalues by; including explicit
asymptotic solutions valid for a51; have been given in Ref. [4]. The corresponding frequency
condition for the horizontal vibrations is derived by letting l2

y-0 in Eq. (33), and changing the
co-ordinate index from y into z:

sin bz ¼ �iZz sinðbzaÞ sinðbza
0Þ: ð34Þ

Both vertical and horizontal eigenvibrations are separated into two groups for which the
eigenmodes are approximately symmmetric and antisymmetric around x ¼ 0:5; respectively. The
index values 1; 3; 5;y are used for the almost symmetric modes, and the indices 2; 4; 6;y for the
antisymmetric modes. Following Ref. [12] the orthogonality conditions for the linearized damped
eigenmodes are most easily derived by writing Eq. (17) in the equivalent operator state vector
formulation

Krð	Þ 0

0 ml2

" #
ur

’ur

" #
�

crldðx� aÞ ml2

ml2 0

" #
’ur

.ur

" #
¼

frðx; tÞ

0

" #
; r ¼ y; z; ð35Þ

where ’ur ¼ @ur=@t; and Krð	Þ denotes the spatial operator

KrðurÞ ¼ H
@2ur

@x2
� l2

r

Z 1

0

urdx
� �

: ð36Þ

frðx; tÞ includes both the external load and the non-linear terms of Eq. (17) as

frðx; tÞ ¼ �prðx; tÞl2 � D2;rðuÞ � D3;rðuÞ: ð37Þ

Obviously, frðx; tÞ 
 0 in case of linear eigenvibrations. From Eq. (24) follows that the jth linear
eigenvibration solution to the homogeneous version of Eq. (35) has the form

urðx; tÞ

’urðx; tÞ

" #
¼ *vr;jðxÞeior;j t; *vr;jðxÞ ¼

1

ior;j

" #
*ur;jðxÞ; r ¼ y; z: ð38Þ
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Next, Eq. (38) is inserted into Eq. (35), followed by a scalar multiplication with *vr;kðxÞ and
integration over the interval ½0; 1�: This leads to the identityZ 1

0

*vT
r;kðxÞ

Krð	Þ 0

0 ml2

" #
*vr;jðxÞdx ¼ ior;j

Z 1

0

*vT
r;kðxÞ

crldðx� aÞ ml2

ml2 0

" #
*vr;jðxÞdx: ð39Þ

Since Krð	Þ is a self-adjoint operator, Eq. (39) immediately provides the following orthogonality
conditions: Z 1

0

*vT
r;kðxÞ

Krð	Þ 0

0 ml2

" #
*vr;jðxÞdx ¼ �or;jMr;jdjk; ð40Þ

Z 1

0

*vT
r;kðxÞ

crldðx� aÞ ml2

ml2 0

" #
*vr;jðxÞdx ¼ iMr;jdjk; ð41Þ

where Mr;j denotes a modal mass defined as

Mr;j ¼ 2or;jml2
Z 1

0

*u2
r;jðxÞdx� icrl *u

2
r;jðaÞ

¼ l
ffiffiffiffiffiffiffiffi
Hm

p
2br;j

Z 1

0

*u2
r;jðxÞdx� iZr *u

2
r;jðaÞ

� �
: ð42Þ

4. Forced non-linear vibrations

The solution of the non-linear forced vibration problem (35) is searched for in terms of
the following expansion in the state vector eigenmodes for the vertical and horizontal motions,
Ref. [12]

urðx; tÞ

’urðx; tÞ

" #
¼
XN
j¼1

ð*vr;jðxÞqr;jðtÞ þ *vnr;jðxÞq
n

r;jðtÞÞ: ð43Þ

Eq. (43) is inserted on the left sides of Eq. (35) and the resulting equation is multiplied scalarly
with *vr;kðxÞ; followed by an integration over the interval ½0; 1�: Since *vr;kðxÞ is different from all the
eigenmodes *vnr;jðxÞ; use of the orthogonality conditions (40) and (41) leads to the differential
equation for the modal co-ordinate qr;jðtÞ:

’qr;j � ior;jqr;j ¼ fr;jðtÞ; fr;jðtÞ ¼
i

Mr;j

Z 1

0

*ur;jðxÞfrðx; tÞdx ð44; 45Þ

Insertion of Eq. (37) into Eq. (45) provides

fr;jðtÞ ¼ �
i

Mr;j

Z 1

0

*ur;jðxÞðprðx; tÞl2 þ D2;rðuÞ þ D3;rðuÞÞdx: ð46Þ

At first the linear response of Eq. (44) to a harmonic varying load per unit length acting in the
y-direction with the circular frequency o and the constant amplitude pr;0 is investigated, i.e.,

prðx; tÞ ¼ pr;0 cosðotÞ; ð47Þ
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where pz;0 ¼ 0: Hence, the modal loading (46) may be written

fr;jðtÞ ¼ �i2Fr;j cosðotÞ ¼ �iFr;jðeiot þ e�iotÞ; ð48Þ

Fr;j ¼
pr;0l2

2Mr;j

Z 1

0

*ur;jðxÞdx: ð49Þ

Then, the stationary linear harmonic response to Eq. (44) becomes

qr;jðtÞ ¼ Fr;j
eiot

or;j � o
þ

e�iot

or;j þ o

� �
: ð50Þ

Since the damping of the cable is presumed to be small, the denominator in the first term of the
right side of (50) becomes large as o-jor;j j; whereas the second term remains small. Hence, under
resonance amplification the modal coordinate qr;jðtÞ may be written approximately as

qr;jðtÞC
eiot

or;j � o
Fr;j: ð51Þ

Formally, Eq. (51) provides the stationary harmonic response, if the real time variation cosðotÞ in
Eq. (48) is replaced with the complex harmonic excitation 1

2
eiot: This approximation, which is only

valid under strong resonance, will be used below.
The main effect of including the non-linear terms through the differential operators D2;rðx; tÞ

and D3;rðx; tÞ in Eqs. (37), (45) is, in addition to generating some less important harmonics
(including a static component), to cause qualitative and quantitative corrections to the described
linear harmonic response. Hence, the next step is to calculate these corrections, which are only of
importance under resonance. This suggests that a truncated modal expansion only involving the
first vertical and horizontal modal co-ordinate qy;1 and qz;1 need to be considered at the evaluation
of the non-linear terms entering through the modal load, whereas all other modal co-ordinates
may be evaluated from the linear analysis presented above. For ease of notation the index j ¼ 1
for the non-linear modes are omitted in the following derivations, so qrðtÞ ¼ qr;1; etc.

The harmonic component of the modal co-ordinates may be written as

qrðtÞ ¼ Qre
iFr ; Fr ¼ ot þCr: ð52Þ

Qr denotes the amplitude of the modal co-ordinate, and Cr is the phase relative to excitation (47).
Hence, the introduced approximations imply that the displacement field attains the form, cf., (38)
and (43),

urðx; tÞC2QrRe½ *urðxÞeiFr � ¼ 2QrðArðxÞ cosFr � BrðxÞ sinFrÞ; ð53Þ

where ArðxÞ ¼ Re½ *urðxÞ� and BrðxÞ ¼ Im½ *urðxÞ�:
In the following it is assumed that the eigenmodes are normalized to unity at the midpoint, i.e.,

*urð0:5Þ ¼ 1: Further, if the damping of the cable is low, as is the case for ao0:02; BrðxÞ amounts to
a few percent of ArðxÞ as seen for the example shown in Fig. 2. Hence, the term BrðxÞ sinFr may be
ignored in Eq. (53), so

urðx; tÞC2QrArðxÞ cosFrðtÞ: ð54Þ

Because of the applied normalization 2Qr cosFrðtÞ may be interpreted as the displacement of the
midpoint of the cable in the co-ordinate direction r: Upon insertion of the harmonic response (54)
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into Eqs. (19)–(21) the quadratic and cubic operators D2;rðx; tÞ and D3;rðx; tÞ become periodic in
time. Insertion into D2;rðx; tÞ provides harmonic terms of the zeroth and second order. Hence, the
quadratic non-linear operator does not affect the non-linear harmonic response at the considered
first-order perturbation level. This is a consequence of considering only external loads on the
cable. Alternatively, if support point motions have been considered, parametric terms are
introduced in the equations of motion due to the elongations of the chord, which leads to a
substantial harmonics in the vertical component of the quadratic non-linear operator. The cubic
operator provides, cf., (21),

D3;rðx; tÞC
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where the dots indicate unspecified harmonics of the third order. Further, cosine terms of the type
cosðot þ jÞ have been replaced by the equivalent complex harmonics 1

2
eiðotþjÞ in the last

statement, cf., Eq. (51). In Eq. (55) the approximation AzðxÞCsinðpxÞ may always be used for
further reduction of the expression. The corresponding approximation for AyðxÞ is not applicable
unless the stiffness parameter l2

y is well below say 20 due to the occurrence of reverse motion near
the supports, see Ref. [4]. Insertion of Eq. (55) into Eqs. (44), (45), and retaining only the
harmonic terms of first order, provides the following algebraic equations for the determination of
the amplitudes Qr and phases Cr of the harmonic modal response

ðor � oþ aryð2þ ei2ðCy�CrÞÞQ2
y þ arzð2þ ei2ðCz�CrÞÞQ2

zÞQre
iCr ¼ Fr: ð56Þ

where Fr is given by Eq. (49), and the constants ars are defined as

ars ¼
1

2Mr

EA

L0l

Z 1

0

d *ur

dx
dAr

dx
dx

Z 1

0

dAs

dx

� �2

dx; r; s ¼ y; z: ð57Þ

Although omitted here analytical expressions for ars; Mr and Fr may be evaluated based on
Eqs. (31) and (32). It follows from Eq. (57) that the fractions ayy=ayz and azz=azy are both real, and
that ayyazz=ðayzazyÞ ¼ 1:

5. Non-linear harmonic response analysis

The set of equations (56) is seen to be symmetric in the directions y and z; where the only
difference is in the precise definition of the coefficients ars: Assuming that the harmonic excitation
is only acting in one of the two directions, the analysis may then be performed for this setup of the
load. Then, the corresponding results for the load acting in the other direction can be derived by a
change of indices from the obtained solution. Hence, by considering the case of loading in the
vertical plane, Fz ¼ 0; and Eq. (56) may be written in terms of the equivalent equations

ðoy � oþ 3ayyQ2
y þ ð2þ ei2CÞayzQ

2
zÞQye

iCy ¼ Fy; ð58Þ

ðoz � oþ 3azzQ
2
z þ ð2þ e�i2CÞazyQ2

yÞQze
iCz ¼ 0; ð59Þ

where C ¼ Cz �Cy denotes the phase difference between the modal co-ordinates.
The second equation is homogeneous and can be satisfied in two ways: either Qz vanishes

identically, or the large parentheses are identically zero. The first case corresponds to motion in
the vertical plane—the plane of the load—while the second case leads to coupling between the
motion in the y- and z-planes, so-called whirling motion.
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5.1. Vertical motion

In this case Qz ¼ 0 and the remaining equation (58) can be rewritten as an expression for the
phase angle Cy in terms of the frequency o and the response amplitude Qy;

e�iCy ¼ ðoy � oþ 3ayyQ2
yÞ

Qy

Fy

: ð60Þ

An equation for the amplitude Qy is obtained by multiplication of both sides of Eq. (60) with their
complex conjugates. This leads to the following cubic equation in Q2

y;

ðjOyj2 þ 6Re½Oy�Q2
y þ 9Q4

yÞQ
2
y ¼

Fy

ayy

����
����
2

; ð61Þ

where the normalized difference of the frequency from the natural frequency of the vertical
motion is conveniently introduced as

Oy ¼
oy � o

ayy

: ð62Þ

Eq. (61) may have one, two or three positive real solutions for Q2
y; which all determines a possible

harmonic motion. However, in the case of three solutions only the motions with the largest and
the smallest amplitudes are stable according to a Lyapunov first order perturbation instability
criterium. The associated phaseCy is next determined as the negative argument of the right side of
Eq. (60) with the relevant solution for Qy inserted. Bearing in mind that 2Qy denotes the
amplitude of the harmonic response at the mid-point, Eq. (61) may be considered as the amplitude
relation for a standard Duffing oscillator with a hardening non-linear parameter e determined
from 3

4
e ¼ 3

8
jayyj:

5.2. Whirling motion

The whirling motion is determined from the solution corresponding to vanishing of the first
factor in Eq. (59),

oz � oþ 3azzQ
2
z þ ð2þ e�i2CÞazyQ2

y ¼ 0: ð63Þ

The connection between the motion in the y- and the z-plane is determined by isolating the phase
angle C in Eq. (63). This implies writing the equation in the form:

oz � o
azy

þ 2Q2
y þ 3

azz

azy

Q2
z

� �
¼ �Q2

y e�i2C: ð64Þ

Comparison with Eq. (62) the notation is introduced for the normalized difference of the
frequency from the natural frequency in the horizontal direction as

Oz ¼
oz � o

azy

ð65Þ

for the normalized difference between the frequency o and the natural frequency oz for the
horizontal motion.

It is noted that the ratio azz=azy is real, and thus the parentheses are real. A simple relation for
the phase angle in terms of the normalized frequency can therefore be obtained by subtracting the
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conjugated equation from Eq. (64), whereby

sinð2CÞ ¼
Im½Oz�

Q2
y

: ð66Þ

Another relation, for the amplitude ratio Qz=Qy; is obtained by multiplication of both sides of
Eq. (64) with their complex conjugate. When it is noted that the parentheses are real, this gives the
relation

2Q2
y þ 3

azz

azy

Q2
z

� �2

þ2Re½Oz� 2Q2
y þ 3

azz

azy

Q2
z

� �
þ jOzj

2 ¼ Q4
y: ð67Þ

This is a quadratic equation in Q2
z ; whereby the solution takes the form

azz

azy

Q2
z ¼ �

1

3
2Q2

y þRe½Oz�7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4

y � Im½Oz�2
q� �

: ð68Þ

This relation determines the amplitude Qz in terms of Qy and the normalized frequency Oz:
If the cable is undamped in the horizontal direction (i.e., cz ¼ 0Þ; then Im½Oz� ¼ 0 and the phase

difference becomes exactly C ¼ 7p=2; or C ¼ 0; p: In case of whirling motions the semi-axes of
the trajectory become parallel to the modal co-ordinate axes. Since, jIm½Oz�j5Y ; it follows from
Eq. (66) that solutions in Eq. (68) with ‘‘+’’ and ‘‘�’’ signs in front of the square root determines
phase motions and whirling motions, respectively. All phase motions turn out to be unstable, and
will not be analyzed further.

In addition to two relations (66) and (68) equations are required for the phase angle Cy and the
amplitudes Qy: First, a relation is obtained for the phase angle Cy by multiplication of Eq. (58)
with ayz=ayy;

oy � o
ayy

þ 2
azz

azy

Q2
z þ 3Q2

y

� �
þ

azz

azy

Q2
z

� �
ei2C ¼

e�iCy

ayy

Fy

Qy

; ð69Þ

where it has been used that ayz=ayy ¼ azz=azy: The phase angle C can be eliminated from Eq. (69)
by multiplication with Q2

y and substitution of the conjugate of Eq. (64)
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Q2
z

� �
þ 3Q4

y � 3
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Q2
z

� �2
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Fy

ayy
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Multiplication of both sides of this equation with their complex conjugate leads to the equation

3Q4
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azy

Q2
z

� �2
" #2

þ2 Re½Oy�Q2
y �Re½Oz�
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y
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y: ð71Þ
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Collecting terms leads to

9Q8
y þ 6Re½Oy�Q6

y þ jO2
yjQ

2
y � ½18Q4

y þ 6Re½Oy�Q2
y�

azz

azy

Q2
z

� �2

� ½6Re½Oz�Q4
y þ 2Re½OyOz�Q2

y�
azz

azy

Q2
z

� �

þ 9
azz

azy

Q2
z

� �2

þ6Re½Oz�
azz

azy

Q2
z

� �
þ jOzj2

( )
azz

azy

Q2
z

� �2

¼
F2

y

jayyj2
Q2

y: ð72Þ

The terms in the braces are evaluated from Eq. (67), whereby Q2
y appears as a factor to all terms of

the equation. After removing the common factor Q2
y the equation is

9Q6
y þ 6Re½Oy�Q4

y þ jO2
yjQ

2
y � ½6Re½Oz�Q2

y þ 2Re½OyOz��
azz

azy

Q2
z

� �

� 21Q2
y þ 6Re½Oy� þ 4Re½Oz�

h i azz

azy

Q2
z

� �2

�12
azz

azy

Q2
z

� �3

¼
F2

y

jayyj2
: ð73Þ

In this equation Q2
z can be eliminated by use of solution (68). The solution with the minus sign is

used, as this solution represents the whirling motion as already mentioned. The result is an
equation of the form

ðA1 þ A2Q2
y þ 32Q4

yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4

y � Im½Oz�2
q

¼ A0 þ A2Q2
y � A3Q4

y � 32Q6
y; ð74Þ

with the coefficients

A0 ¼ 9F2
y=jayyj2 � 6Re½OyO

n

z �Re½Oz� � ð6Re½Oy� � 8Re½Oz�Þ Im½Oz�2;

A1 ¼ 6Re½OyO
n

z � � 4Re½Oz�2 þ 4Im½Oz�2;

A2 ¼ � 9jOyj
2 þ 12Re½OyO

n

z � � 5Re½Oz�2 þ 3Im½Oz�2; A3 ¼ 16Re½Oz�: ð75Þ

Finally, Eq. (74) can be reduced to a quartic equation in Q2
y by squaring both sides.

B0 þ B1Q2
y þ B2Q4

y þ B3Q6
y � B4Q8

y ¼ 0: ð76Þ

The coefficients of this equation are combinations of the coefficients (75),

B0 ¼A2
0 þ A2

1 Im½Oz�2; B1 ¼ 2A0A2 þ 2A1A3Im½Oz�2;

B2 ¼ � A2
1 þ A2

2 � 2A0A3 þ ðA2
3 þ 64A1Þ Im½Oz�2;

B3 ¼ � 2ðA1 þ A2ÞA3 � 64A0 þ 64A3 Im½Oz�2;

B4 ¼ � 64ðA1 þ A2Þ þ 1024Im½Oz�2: ð77Þ

The quartic equation (76) may have either four real solutions, two real solution and two
complex-conjugated solutions or two pairs of complex-conjugated solutions. Negative real and
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complex solutions contradict the basic assumption of real amplitudes and must be discarded as
false. For any positive real solution Q2

y; the corresponding solution for Q2
z and C ¼ Cz �Cy

follows from Eqs. (68) and (66), using the negative sign in front of the square root. Finally, Cy is
obtained from Eq. (70).

Further, in case that more than one whirling solution exists, only the one, which is generated by
bifurcation from the vertical solution turns out to be Lyapunov stable.

6. Numerical example

The data of the considered cable refers to the longest stay in the cable-stayed bridge across
the Øresund between Denmark and Sweden. The supports are assumed fixed, corresponding to
k1 ¼ k2 ¼ N: The stiffness of the cable is EA ¼ 2:17� 109 N; and the equilibrium force
H ¼ 5:5� 106 N: The chord length is 260 m; and the cable mass is m ¼ 81:05 kg=m;
corresponding to a total weight of W ¼ 2:038� 105 N: The intensity of the oscillating load is
selected as py;0 ¼ pz;0 ¼ 0:15 W=l:

The damping constants are specified as cy ¼ cy0copt and cz ¼ cz0copt; where copt ¼
ffiffiffiffiffiffiffiffi
Hm

p
=ðpaÞ

denotes the optimal damping constant for a taut cable, Ref. [3]. In case the damper
constant is smaller than the optimal value less energy is dissipated due to the reduced
viscosity. A larger damper constant will also lead to reduced energy dissipation, because
the damper in this case tends to block the displacement of the support point. The intention
of the following examples is to investigate the effect of the factors cy0 and cz0 on the whirling
response.

Fig. 2 shows the real and imaginary part of the first vertical and horizontal modes of the
linearized problem with the normalization *urð0:5Þ ¼ 1; using the parameter values a ¼ 0:02 and
cy0 ¼ cz0 ¼ 1:0: As seen the real parts are almost smooth at the attachment of the damper, and the
imaginary part is everywhere very small.

Figs. 3 and 4 show the possible harmonic response in terms of the modal co-ordinates qyðtÞ
and qzðtÞ as functions of the non-dimensional excitation frequency O ¼ o=jozj; for vertical
and horizontal loading, respectively. Both figures correspond to vibrations of the cable
without dampers, i.e., cy;0 ¼ cz;0 ¼ 0: Solid lines denote branches with stable solutions
according to a first order Lyapunov stability analysis, whereas branches with dashed
signature denote unstable solutions. As stated in relation to Eq. (54) 2Qy and 2Qz denote
the amplitudes of the midpoint of the cable. In all shown figures the phase difference C
has been normalized with respect to p=2: Hence, C attains exactly the value p=2 in Figs. 3 and 4
for both stable and unstable branches as a consequence of the cable being undamped
in the vertical direction. The in-plane harmonic response remains stable up to a critical
level as indicated by the point A in the figures, where a transition to the stable whirling
mode takes place. The amplitude response curves in the two figures are much alike, although
transition to whirling motion takes place at a somewhat higher level in the horizontal load case
in Fig. 4.

Figs. 5–7 display the modal amplitudes in the vertical load case, when the vertical damper is
kept at the optimal taut cable value, while the horizontal damper is varied through the values 0.05,
1.0 and 20.0 times the optimal taut cable value.
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The modal damping ratio zr of a complex mode may be defined in terms of the complex damped
frequency or of the mode by the relationship

or ¼ jorj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2r

q
þ izr

� �
: ð78Þ

For the small damping cz0 ¼ 0:05 the taut cable frequency is jozj ¼ 3:1478=s and the damping
ratio is zz ¼ 9:964� 10�4; while for the large damping cz0 ¼ 20:0 the taut cable frequency is
jozj ¼ 3:2117=s while the damping ratio is zz ¼ 9:977� 10�4: Thus, the damping ratio of the
horizontal oscillations are very similar for Figs. 5 and 7. It is seen that the stable branch of the
whirling motion is also much alike in the two cases. By contrast, the unstable branches are
sensitive to the magnitude of circular eigenfrequency, which is increased in the case shown in
Fig. 7, because of the shortening of the cable length, caused by the locking of the cable due to the
large damping constant.

For the case shown in Fig. 6, where the damper in the horizontal direction is at the optimal taut
cable value, a qualitatively different pattern is observed. Firstly, whirling motions are confined to
a much smaller frequency interval following the bifurcation point. Secondly, the maximum

ARTICLE IN PRESS

0.8 1 1.2 1.4
0

2

4

6

8

A

2Q
y 

[m
]

Ω
0.8 1 1.2 1.4

0

2

4

6

8

2Q
z [

m
]

Ω
0.8 1 1.2 1.4

0.5

0.6

0.7

0.8

0.9

1

1.1

2Ψ
/π

Ω

Fig. 3. Harmonic amplitude response, vertical loading. py;0 ¼ 0:15W=l; a ¼ 0:02; cy0 ¼ 0:0; cz0 ¼ 0:0: ——, stable

solutions; - - - -, unstable solutions.

0.8 1 1.2 1.4
0

2

4

6

8

A

2Q
z [

m
]

Ω
0.8 1 1.2 1.4

0

2

4

6

8

2Q
y 

[m
]

Ω
0.8 1 1.2 1.4

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

2Ψ
/π

Ω

Fig. 4. Harmonic amplitude response, horizontal loading. pz;0 ¼ 0:15W=l; a ¼ 0:02; cy0 ¼ 0:0; cz0 ¼ 0:0: ——, stable

solutions; - - - -, unstable solutions.

S.R.K. Nielsen, S. Krenk / Journal of Sound and Vibration 265 (2003) 417–435432



ARTICLE IN PRESS

0.8 1 1.2 1.4
0

2

4

6

8

A

2Q
y 

[m
]

Ω
0.8 1 1.2 1.4

0

2

4

6

8

2Q
z [

m
]

Ω
0.8 1 1.2 1.4

0.5

0.6

0.7

0.8

0.9

1

1.1

2Ψ
/π

Ω

Fig. 6. Harmonic amplitude response, vertical loading. py;0 ¼ 0:15W=l; a ¼ 0:02; cy0 ¼ 1:0; cz0 ¼ 0:05: ——, stable

solutions; - - - -, unstable solutions.

0.8 1 1.2 1.4
0

2

4

6

8

A2Q
y 

[m
]

Ω
0.8 1 1.2 1.4

0

2

4

6

8

2Q
z [

m
]

Ω
0.8 1 1.2 1.4

0.5

0.6

0.7

0.8

0.9

1

1.1

2Ψ
/π

Ω

Fig. 7. Harmonic amplitude response, vertical loading. py;0 ¼ 0:15W=l; a ¼ 0:02; cy0 ¼ 1:0; cz0 ¼ 20:0: ——, stable

solutions; - - - -, unstable solutions.

0.8 1 1.2 1.4
0

2

4

6

8

A

2Q
y 

[m
]

Ω
0.8 1 1.2 1.4

0

2

4

6

8

2Q
z [

m
]

Ω
0.8 1 1.2 1.4

0.5

0.6

0.7

0.8

0.9

1

1.1

2Ψ
/π

Ω

Fig. 5. Harmonic amplitude response, vertical loading. py;0 ¼ 0:15W=l; a ¼ 0:02; cy0 ¼ 1:0; cz0 ¼ 0:05: ——, stable

solutions; - - - -, unstable solutions.

S.R.K. Nielsen, S. Krenk / Journal of Sound and Vibration 265 (2003) 417–435 433



vibration amplitudes encountered during whirling motions are significantly smaller than those
displayed in Figs. 5 and 7. It is also interesting to note that the transition to whirling motion
reduces the maximum vibration amplitudes compared to the maximum amplitude of the vertical
mode in single-mode response, presuming this to be stable beyond the bifurcation point.

The previous observations suggest that qualitative behaviour of whirling motion is strongly
influenced by the damping constant in the unloaded mode, i.e., cz in Figs. 5–7. Fig. 8 shows a case
where the vertical mode has very low damping, resulting in excessive single-mode response. The
damper in the horizontal direction is the same as for the case in Fig. 6. The results of Figs. 6 and 8,
corresponding to interchange of the dampers, show similar magnitude of the whirling motion but
a slight difference in the phase angle.

In Fig. 9 is shown the trajectory of the midpoint of the cable under whirling motion for optimal
damping of the loaded vertical mode, while the horizontal damping is low (Fig. 9(a)) or optimal
(Fig. 9(b)) corresponding to Figs. 5 and 6, respectively. It is seen that the optimal damping in both
directions the semi-axes of the elliptic trajectory is slightly tilted, and the size of the ellipse is
considerable smaller.
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7. Concluding remarks

A non-linear theory for vibrations of shallow cables has been formulated. The basic
assumptions are moderate sag and the absence of spatial variation of the cable force component
along the chord. The latter assumption permits the axial components of the problem to be
eliminated by integration as in the corresponding linear theory by Irvine [11].

In particular the response to harmonic transverse load has been investigated by expanding the
solution in the damped modes of the corresponding linearized problem. Because of the shallow
cable assumptions the non-linear part of the response can be reduced to the analysis of a 2 d.o.f.
system, involving a single vertical and a single horizontal mode. It is demonstrated that both
undamped and damped vibrations may bifurcate into a state of whirling motion, where vertical
and horizontal motion of comparable amplitude takes place at a phase difference close to 1

2
p:

It is shown that a pair of independent dampers acting in the vertical and horizontal direction,
respectively, can reduce in-plane as well as whirling motion if appropriately tuned. The study
indicates that tuning of both dampers determined to the optimal values of the linearized theory
provide effective damping, reducing the amplitudes as well as the resonant frequency range.
Reduction of the whirling motion depends on near optimal tuning of both dampers.
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